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Many techniques for accomplishing this are now un-
der investigation and will be reported in later articles.
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Coupled Circular Cylindrical Rods

Between Parallel Ground Planes

EDWARD G. CRISTAL, MEMBER, IEEE

Summary—The normalized self and mutual capacitances of peri-
odic, circular cylindrical rods located between parallel ground planes
are presented graphically. The capacitances were determined by
solving the appropriate integral equation by numerical methods.
Charts of self and mutual capacitance are given for rod diameter-to-
ground plane spacing ratios varying from 0.05 to 0.8 and for very
small fo very large spacings between rods. Accuracy of the data is
believed to be generally better than 2 per cent for the normalized
mutual capacitance and generally better than 1 per cent for the
normalized self capacitance. An approximate design method is also
presented that permits using the data to synthesize filters (such as
interdigital and comb-line filters) that require rods of nonequal
diameters and spacings. An example of the design method is given,
and a filter is constructed from the resulting data. The filter response
was measured and found to agree closely with that called for by
the theory.
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I. INnTrRODUCTION

HE DESIGN of many UHF and microwave filters
T is based on electrically coupling arrays of cylindri-

cal bars located between parallel ground planes
of which the comb-line and interdigital filter are two
examples [1], [2]. In the past, rectangular bars gener-
ally have been used as coupling elements because the
necessary data are available [3]. Filter equations and
procedures of Matthaei [1], [2], together with design
data of Getsinger [3], have been used to design filters
which have proved to have excellent electrical character-
istics. However, obtaining rectangular bars in practice
requires manufacturing processes which are generally
costly. On the other hand, the use of circular cylindrical
rods as resonators offers several manufacturing advan-
tages and should result in the same excellent electrical
filter properties. For these reasons, design data of
coupled circular cylindrical rods between parallel ground
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planes and a design method for using the data to synthe-
size filters have been prepared and are presented in this
paper.

The coupled rod data are presented in Section [I.
Also in Section 11, the filter synthesis method is ex-
plained by means of an example. The mathematical
derivation of the design data is given in Section III.
The physical basis for the design method is presented in
Section IV. A discussion of the accuracy of the coupled
rod data will be found in Section V. The measured per-
formance of a trial filter constructed from the design
data of Section I1 is described in Section V1.

II. TecaNicAL DESCRIPTION

The geometry of the periodic, circular cylindrical rods
between parallel ground planes and the dimensional
notation are shown in Fig. 1. The circular rods have
diameter d and are spaced periodically at a distance c.
The ground planes are separated at distance b. The
spacing between adjacent rod surfaces is denoted by s
and is given by

s=c¢—d. (1)

Cristal: Coupled Rods Between Ground Planes

!

Fig. 1—Coupled circular cylindrical rods
between parallel ground planes.

In the derivation of the design data fringing capaci-
tances beyond nearest neighbors were neglected. It is
therefore possible to describe TEM propagation along
the structure in terms of two orthogonal modes which
have been designated as the even mode and the odd
mode. In the even mode all center conductors are at the
same potential, while in the odd mode successive center
conductors are at equal but opposite signed potentials
with respect to the ground planes. These two TEM
modes have different characteristic impedances which
are intimately related to the total static capacitances of
the rods to ground when in one or the other mode. The
total static capacitances are related to the mutual
capacitance between successive rods Cn and the self
capacitance C, of each rod. A consideration of Fig. 1
shows that the total capacitance measured between one
rod and ground when the rods are driven in the odd
mode is

Cy = Cy+ 4Chp, 2)
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and the total capacitance measured between one rod
and ground when the rods are driven in the even mode is

C, = C,. (3)
From (2) and (3) are obtained
C, = C. (1)
and
Cm= 1/4(Co — C.). (5)

The characteristic impedance Z; of a lossless uniform
transmission line operating in the TEM mode may be
related to its shunt capacitance by

— _ 1 m
Zov e = G ohms (6)

where

¢, 1s the relative dielectric constant of the medium
in which the wave travels

7 is the impedance of free space (376.7 ohms)

C/e1s the ratio of the static capacitance per unit

length between conductors to the permittivity
(in the same units) of the dielectric medium.
(This ratio is independent of the dielectric con-
stant.)

The even and odd mode impedances of coupled TEM
lines can be found by substituting even and odd mode
capacitances of the lines into (6).

Graphs of normalized capacitance C/e vs normalized
spacing s/b are presented in a form that assists the filter
synthesis method. In Fig. 2, C./e vs (1/2)s/b is given.
In Fig. 3, (1/2)C,/e vs (1/2)s/b is given. Although these
data are for the periodic structure of Fig. 1, a method
has been developed whereby the data can be used for
synthesis of filters in which rods of arbitrary diameters
and spacings are required. The method is approximate,
but is expected to give good results.

The design method will be explained by means of an
example. To facilitate the evaluation of the method, a
previously constructed interdigital band-pass filter that
uses rectangular bars has been chosen as the example.!
The filter design calls for a 6-resonator filter having a
10-per cent bandwidth and a 0.1-db Chebyshev ripple
in the pass band. Because the filter is symmetrical about
its center, only one-half the filter is shown in the cross-
sectional view in Fig. 4, page 430. The nomenclature
used in Fig. 4 is adopted for this discussion, except that
the dimensions w; and ¢ for the rectangular cross section
of the bars are replaced by the diameters di of the round
rods. The required normalized capacitances for the de-
sign example are given in Table [ [2].

1 Matthaei, see [2], pp. 483-486.



430 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES July

o
"

1
t
JREEE SEEu A

[¢, B )}
.

AT & HH HHHH
1 1 ink Wumanami I ] - ]

I : T nE I i } } HHH A sEasa

[ ! A ESEREN BEE

5 H g EEIESESRRSRES SEEeR=Ees sEEE H
w ! iaaas BREEE
~ RS & H i H H T 1H
e b NE Bapa: B3 Sans HEf Emnas SEasanas H mE
= Sual T M asw
%) - T [ FE &N 11 i t
j rrHERT -‘Ss; 1 T H SEan
7 N T N : T
T FEEAN i L] { T NEREI T aANE

0.2

SR

18 BASTS FUUA

il

0.05 T atarn

0.06 ; ganns : 4{ paze =

s

i
1
I
1
¥

v

T
1
=

Iy

1
T
T

I

t

T

b

i
T
T
i
!
-
1
v
1

0.04

T PN { d/b

FmERe
T
1
1
T
15}

+

0.03 [HEHEE Biad=Eedi i

HEINITN 0.6

T

I TR T ] N
. EEES I A A —— LN
H RREIRRER anntge [ T T T [ THH PO ET 3 0.4
1 ENEN AR N N i I AN I Tt =7
it I I ! Tt 1 WRRRARL. 1 R Qi
0.02 T T T T O PR T T T X
s Al 1 TN 0.2
[l ‘ [ i [ ]
i Tl T
] 1

0.01 i I ‘ ! il 1 0.05
0.06 0.5 0.25 0.35 0.45 0.55 0.65 075

—é—s/b

Fig. 2—Graph of Cy,/e (normalized mutual capacitance) vs $(s/b) (normalized half spacing).



1964 Cristal: Coupled Rods Between Ground Planes o 431

i |
T

4 d/b
0.8

6 F f=
i 54 0.7
5 H sassa et

H 11 i 3 BRRN
i gissaicEts il 0.5
FATTT H =+ 0.4
L1 L4+ i HH
4 14+ -+
{14 [T i H 0.3
2 U T il
1 = - RN
[ . HH 0.2
ul 3 He =17 1
1 L LT
i
1 A 4
iy L 0.1
1 11
g : H i

L
2
i
T

TN

0.8

1L

T
T

NES NNIEUANET CRNTRIINNS
48R AREA NS

0.6

T

T T T ST

TIT
IR
T
nus

0.5

T
T
anat

T

1T
mmy

04

TS

T
T
pem

13
T
=

03

0.2

0.1 -
0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75

I
Eslb

Fig. 3—Graph of (3)C,/e (normalized half self capacitance) vs (4)s/b (normalized half spacing).



432
; l_o_ _2 _LC
Tz *—Wr—&ﬁ—ﬁ I—-& 2““
| b
l_o Lo _2 J
Tz Tz 2 1’2

L—woHtesm#-m»leswlw%su#w{

Fig. 4—Cross section of an array of parallel-coupled
lines between ground planes.

TABLE [

TABULATION OF QUANTITIES OF A 10-PER CENT BANDWIDTH
INTERDIGITAL FILTER DESIGN WITH #=06 RESONATORS [2]

k Crksr/€ k Cr/e

0 and 6 1.582 0 and 7 5.950
1and 5 0.301 land 6 3.390
2 and 4 0.226 2and § 4.420
3 0.218 3and 4 4.496

This filter was designed for 0.10-db Chebyshev ripple.

The design procedure given here assumes that values
for the normalized capacitances have been previously
obtained [1], [2]. The initial step in obtaining the di-
mensions of the structure from the normalized capaci-
tances is to mark off on the graph of Fig. 2 horizontal
lines corresponding to the values of C,/e that are called
for in the design. In this example four horizontal lines
of Cu/e=Ciupi/e (for =0, 1, 2, 3) =1.58, 0.301, 0.226,
and 0.218 are drawn. Next, the coordinates of the inter-
sections of constant C,/e=0.218, 0.226, 0.301, and 1.58
with the family of constant d/b curves are noted and
plotted on the graph of Fig. 3. Smooth curves are then
drawn on the graph of Fig. 3 through points of constant
Cn/€, thus obtaining curves of constant C,/e. This is
shown in Fig. 5.

Next, it 1s useful to partition the filter configuration
of Fig. 4 into smaller subsections as shown in Fig. 6.
Each subsection consists of a normalized capacitance
to ground and the normalized coupling capacitances to
the right and to the left. To determine the normalized
rod diameters and normalized spacings the designer may
choose any of the subsections (a), (b), (c) or (d) of
Fig. 6 and proceed in the following manner: Assume
that Fig. 6(d) is chosen. On the graph of Fig. 5, assisted
by a suitable drawing aid, several auxiliary curves of
constant d/b are drawn which intersect the curves of
constant C,/e=0.218 and 0.226. These auxiliary curves
are drawn in the vicinity of one-half the value of the re-
quired normalized capacitance to ground, in this case,
(1/2)C,/e=(1/2)Cs/e=2.25. The objective of drawing
auxiliary curves is to find the unique intersections with the
constant curves of Cn/e=0.218 and 0.226 such that the sum
of the ordinates of the intersections totals C,/e = C:/e=4.5.
The proper d/b curve is shown in Fig. 7.

It is seen in Fig. 7 that the coordinates of the inter-
cept at Cn/e=0.218 are [(1/2)s/b=0.387, (1/2)C,/€
=2.25], and those at C,/e=0.226 are (0.381, 2.25).
Note that the sum of the ordinates is 4.5 as required.
Next, using linear interpolation, d/b of rod 3 is found to
be 0.351.
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used in the design example.

Next, the same technique is applied to the values of
normalized capacitance in Fig. 6(c). The correct auxili-
ary curve of constant d/b is shown in Fig. 8, in which
the coordinates of the intercepts with C,,/e=0.226 and
0.301 are (0.381, 2.24) and (0.335, 2.18), respectively.
Note that the ordinates of the intercepts are unequal;
this will usually be the case. However, the sum of the
ordinates must equal the normalized capacitance to
ground. In this case the sum of the ordinates is 2.24
+2.18=4.42=(y/e. By linear interpoltion d/b of rod 2
is found to be 0.352.

Proceeding to Fig. 6(b) and again applying the design
technique, it is found that the coordinates of the inter-
cepts of the auxiliary constant d/b curve with the Cio/e
=0.301 and Cyp/e=1.582 curves are (0.330, 2.03) and
(0.098, 1.36), respectively. The d/b of rod 1 is found by
linear interpolation to be 0.324.
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Finally, the design technique is applied to Fig. 6(a),
and the coordinates (0.120, 2.5) are determined as the
intercept of the auxiliary constant /b curve and the
Cu/e=1.582 curve. The coordinates («, 3.45) are found
as the intercept of the same constant d/b curve with the
fictitious coupling capacitance to the left of C, set equal
to zero. In the latter instance the right-hand extreme of
Fig. 5 is used where the constant d/b curves are virtually
flat. By linear interpolation, d/b of rod 0 is found to be
0.516. The auxiliary constant d/b curves used in the last
two subsections are shown in Fig. 9.

The respective normalized spacings, $xx1/b are ob-
tained by summing abscissa values that correspond to
the same mutual capacitance. Bookkeeping is simplified
by placing abscissa values along their corresponding
mutual capacitances:

Absas/sza) S\;;;lue, Crin Obtained From
0.120 Ch1 Pﬁg.é(a)
0.098 Cu Fig. 6(b)
0.330 Ciaf
0.335 Cin\ Fig. 6(c)
0.381 Cosf
0.381 Cis\ Fig. 6(d)
0.387 Casf
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Therefore,
sor/b = 0.120 + 0.098 = 0.218 = s5¢7/5
s12/0 = 0.330 4 0.335 = 0.665 = s4¢/b
s23/0 = 0.381 4 0.381 = 0.762 = s544/0
s3a/b = 0.387 4+ 0.387 = 0.774.

Center to center spacings may be obtained by adding
to the appropriate s/b value (1/2)d/b of the rod on the

left and (1/2)d/b value of the rod on the right.
Thus,

Ceit1/b = Skpy1/b + (1/2)di/b + (1/2)dry1/b
cor/b = 0.218 4 0.258 4 0.162 = 0.638 — cq1/b

cas/b = 0.762 + 0.176 + 0.175 = 1.114 = ¢;5/b
c3a/b = 0.774 + 0.1755 4 0.1755 = 1.125.

The normalized rod diameters obtained as described
previously using Figs. 7-9 are

do/b = 0.516 = d;/b
di/b = 0.324 = dg/b
dy/b = 0.352 = dy/b
ds/b = 0.351 = d,/b.

The design specifications {or the filter using rectangu-
lar bars and the same filter using round rods are com-
pared in Table 11, where the spacings between successive
round rods are closer, in general, than spacings between
successive rectangular bars. Also, the round rods are
larger in cross-sectional areas than the rectangular bars.

TABLE II

PARAMETERS OF AN INTERDIGITAL FILTER DEsiGN UsiNG RoUND
Rons ComPARED wiTH THE SAME FILTER UsiNG
RECTANGULAR BARS

Round Reci[an- Round Rectan- | Rectan-
Rods gular Rods gular gular
k Bars k Bars Bars
Skksr/D | Skpqa/b @/o)e | (w/bh (t/bh
Oand6 | 0.218 0.255 || 0and7 | 0.516 0.648 0.3
land5 | 0.665 0.670 land6 | 0.324 0.243 0.3
2and4 | 0.762 0.820 2and 5 | 0.352 0.294 0.3
3 0.774 | 0.830 || 3and4 | 0.351 0.293 0.3

ITI. MATHEMATICAL DETERMINATION OF C,, AND C,

The boundary-value problems associated with the pe-
riodic cylindrical rods between parallel ground planes
depend on the mode of excitation. When the structure
is excited in the odd mode the mathematical problem
is to satisfy Laplace’s equation in the region shown in
Fig. 10(a), and the boundary conditions as given in the
figure. This is a Dirichlet problem. When the structure
is excited in the even mode the mathematical problem
is to satisfy Laplace’s equation in the region shown in
Fig. 10(b) and the boundary conditions as shown in this
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figure. This is a boundary-value problem with mixed
boundary conditions.

As stated in Section II, the capacitance associated
with the solution of the Dirichlet problem is given by
(2), and the capacitance associated with the solution of
the mixed boundary problem is given by (3). From
these are obtained C,, and C,.

The method of determining the even and odd mode
capacitances was to solve the integral equation associ-
ated with the boundary-value problem and thus obtain
the normalized surface charge density; then the total
normalized charge was obtained by integration. The
normalized charge was divided by the potential differ-
ence to give the normalized capacitance. The general-
ized integral equation for both boundary-value prob-
lems is

V(F) = — El;fp [7—'%] In | 7 — 7o ds(?)

1 22 i 1 )
5,470 Tr = py SO + 5 V0 )

7o

wherever the boundary curve has a unique tangent.? P
denotes the principal value of the integral.?

2 In Fig. 11, it is shown that the path of integration for (7) has an
interior right angle. If the position vector 7, lies at this point, the term
(1/2)V{(7) on the right-hand side of (7) should be replaced by
(3/4)V(ro).

¢ Eq. (7) may be derived by taking the two-dimensional integral
formulation for the potential at a point within a closed boundary and
permitting the observation point to approach the boundary (See,
tor example, J. A. Stratton, “Electromagnetic Theory,” McGraw-
Hill Book Co., Inc., New York, N. Y., pp. 166-170 and problem 8,
p- 219; 1941), and permitting the observation point ot approach the
boundary. The limiting operation may be performed as in Mai and
Van Bladel [11], or alternatively, the observation point may alter-
natively be placed on the boundary and the boundary curve in the
vicinity of the observation point deformed into an appropriate seg-
ment of a circle of infinitesimally small radius. The deformation is
such as to leave the observation point within the boundary. The seg-
ment of circle is « radians where the boundary curve has a unique
tangent and is 37 radiaus at the right angle.
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For the Dirichlet problem (7) reduces to

Ozﬁliz(:—)}ln[?—fﬂds(i)

on the outer boundary

—2(V, = V) =]{P [’L(:Z] In | 7 — 70| ds(7)

on the inner boundary (8)

where V7, and 17, are the respective potentials on the
inner and the outer boundary. The notation used in (7)
and (8) is clarified by Fig. 11. Vector # is a position vec-
tor from an arbitrary origin to a point on the boundary
at which the integrand is being evaluated. Vector #, is
a position vector to a point on the boundary where the
voltage is being evaluated. Voltages V(r) and V' (#,) are
the voltages at the vector positions 7 and #, respec-
tively. Vector 4, is a unit vector in the direction of
#—7,. Vector 4, is the outward pointing unit normal to
the boundary surface. Finally, ds(#) is the differential
length of the boundary curve at the vector position 7,
and 7(7)/¢ is the normalized surface charge density at
the vector position 7.

The method of solution was to divide the boundary
curve into # subintervals, and assign to each subinterval
an unknown constant normalized surface charge density
or an unknown constant potential. These unknown con-
stants were then removed from under the integral sign
and the integrations performed analytically or numer-
ically in each subinterval. In the general case, (7) takes
the form

In |7, —7#

subinterval j

ds(%))

HpeTp 1
R am) + (e o
subinterval 5 1 v, — rzl 2

for 1=1, 2, - - -, m. Because of the symmetry of the
boundary curve and boundary conditions, (9) may be
reduced by a factor of 4 or, alternatively, the problem
may be reformulated using one quadrant of the struc-
ture. (The former procedure was used in this work.)
After the integrations in (9) had been carried out, the
equations were arranged into a matrix. For (8) the
matrix takes the form

+ V()

0 g11 f1a v ot gln} ?771,/6

(? g1 © gon 1 |772//6

5 I

T
E |

v gmi gmnj Lﬂm/e
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OBSERVATION  POINT
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POINT
S~

DIRECTION OF
INTEGRATION PATH

\ ]

OUTWARD ~
POINTING UNIT
NORMAL_OF
BOUNDARY CURVE

Fig. 11—Geometry and vector nomenclature used in the even
and odd mode boundary value integral equation.

where V is the potential difference between the bound-
aries. For (7), the matrix takes the form

581 G Gz G ) (/e
r;2 GZI * GZn
75/ €
= 11
Vi (1)
Iurm Gml Gmn -V.r

where V, (i=1, 2, -+, 7) represents the unknown
potential on the part of the boundary where 0 17/dn=90;
and V, (i=1, 2, - - -, m) are constants which take into
account contributions from the second term on the right
in (7). The entries g,, and G;, are constants obtained from
the indicated integrations in (9).

In solving (10) and (11) it was found that convergence
was quicker in many cases when an overdetermined set
of equations was compiled (i.e., m >n) and a least squares
method used to solve them [4]. This was done in all
cases. In order to guarantee accuracy of the inverted
matrix, which was generally a 40 by 40 matrix, pertur-
bation methods were used which required the inverse
matrix to be accurate to 0.01 per cent [5]. This was
found necessary because of the loss of significant digits
in inverting the very large matrices in (10) and (11).

In order to determine whether or not a solution to
(10) or (11) gave a sufficiently close approximation to
the even or odd mode capacitance, the number of sub-
intervals of the boundary curve was increased, thereby
increasing the number of simultaneous equations. The
capacitance obtained from the solution of the new set of
equations was next compared with that of the former
set. When the capacitance remained sufficiently invari-
ant to successive enlargements of the matrix, conver-
gence was assumed.* In order to avoid having to test
every solution by this method, several geometries were
picked that appeared to offer the greatest difficulty of
obtaining convergence. The largest order that was re-
quired to obtain convergence for these geometries was
used for all subsequent cases.

4 The problem of convergence and of the accuracy of the solutions
will be discussed in Section V.
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One additional refinement was explored in attempting
to obtain fast convergence. The side condition that the
total charge be zero was attached, although the condi-
tion is redundant in that it is satisfied by the proper
solution. This technique was applied only to (11). In the
few cases examined, the additional side condition did
appear to result in a better approximation to the correct
answer with smaller matrices than the former method
without side conditions. However, for large matrices no
general trend was clear. Also for rods of very small di-
ameter (t.e., d/b<0.3), the inverse matrix of (11) could
not be obtained in the time allowed. This inability to
obtain an inverse matrix was probably due to the side
condition making the matrix of (11) extremely skew [6]
and thereby causing too great a loss of significant digits
when the matrix was inverted.

1V. PuysicaL BAsis FOR THE METHOD OoF DESIGNING
FiLTERS THAT Usk Rops oF UNEQUAL
DIAMETERS AND SPACINGS

Fig. 12 shows three rods of a hypothetical multirod
filter configuration with the self capacitances divided
into left and right components parts. The following as-
sumptions are made concerning the coupled-rod con-
figuration.

1) Coupling beyond nearest neighbors is negligible.

2) A moderate change in the size or spacing of a given
rod has only a second-order effect on the charge
distribution on the far side of adjacent rods.

Therefore, by assumptions 1) and 2), the mutual capaci-
tance C; .1 is dependent only on the right half of rod ¢
and the left half of ¢41, and (from Fig. 12) C,% is inde-
pendent of the spacing and diameter of the adjacent rod
on the right; C,® is independent of the spacing and diam-
eter of the adjacent rod on the left. The self capacitance
of a rod is given by

C,' = Cn;L + C,;R. (12)

Consider the rods in Fig. 12 to be excited in the odd
mode. This is shown in Fig. 13 where the electric flux
lines are sketched and a ground value equipotential line
is approximated. The equipotential line will be ap-
proximately straight for rods having moderate and far
spacings and should not be strongly dependent on the
rod diameters with these spacings. (In most filter de-
signs the rods in the center of the filter are nearly the
same diameter and only vary greatly at the ends of the
filter.) If the rods were excited in the even mode, then
the equipotential line in Fig. 13 would approximately be
the line where, also, 0 V/0n=0.5

Again from Fig. 13, it may be stated on the basis of
the previous approximations that the left half of rod 2
sees boundary conditions which are equivalent to a sys-
tem of equispaced, equidiameter rods of diameter d,
spaced at s=s* and having a mutual capacitance

5 This approximation is perhaps in error more than previous ap-
proximations. However, for moderately spaced rods the even mode
capacitance is not strongly dependent on spacing. Therefore, a larger
error in the position of the 8V /9n =0 line can be tolerated.
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Fig. 12—Hypothetical multirod filter configuration showing divi-
sion of self capacitance into left and right component parts.

ELECTRIC
FLUX LINES

7
A

EQUI-POTENTIAL LINE

Fig. 13—Hypothetical multirod filter configuration
excited in odd mode.

Cn=Ci. (Note that s;¥/2 is indicated in Fig. 13.) At
the same time, the right half of rod 1 sees boundary
conditions equivalent to a system of equispaced, equi-
diameter rods of diameter d; spaced at s=s% but also
with a mutual capacitance of Cn,=Cy.® Through the
use of this artifice (i.e., approximating left and right
boundary conditions independently) the designer is able
to use the data given in Figs. 2 and 3 to obtain arbitrary
values of mutual and self capacitance needed in a filter
design. The design method described in Section II is
one method of utilizing the above artifice. The method
described was found easy to apply and also efficient in
terms of design time.

V. ACCURACY OF THE SOLUTIONS

A difficulty that arises from solving (7) and (8) by
the method discussed in Section III is that the accuracy
of the solution cannot be precisely stated. Although
other methods of solutions are possible which in theory
give upper and lower bounds for the answer [7] (at least
in the Dirichlet problem), practical considerations make
these methods undesirable in this particular problem.
However, in order to be sure of the results obtained by
the method of Section IlI, several comparisons are made
in Table 1II with data taken from other sources.

By replacing the round rods with infinitesimal line
charges located at the center of each cylinder and using
the method of images, a solution has been obtained

6 This concept (i.e., that jche proper left and right half spacings
are determined when successive rods have the same mutual capaci-
tance) is credited to Dr. G. L. Matthaei.
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TABLE III

COMPARISONS OF CHARACTERISTIC IMPEDANCES OBTAINED FROM SOLUTIONS OF (7) AND (8)
Wit TaoSE OBTAINED FrROM PUBLISHED SOURCES
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o Tt e
d/b s/b This Work Accuracy not specified Difference
06 1.5 44 .1 45.1 1.5 per cent
0.4 1.5 68.7 69.4 1.0 per cent
0.2 1.5 109.8 110.9 0.99 per cent
Case I'TT-Handbook [9]**
%ﬁ‘:;‘ g\hgi Zo1a ohms Per cent
d/b s/b Accuracy not specilied Difference
0.5 0.5 46.1 15.0 2.5 per cent
0.1 0.9 142.6 141.5 0.78 per cent
Ie Chisholm [10]***
ase Zodaa ohms Zoaq ohms Worst
This Work Accuracy about 0.6 per cent, when the Per cent
a/b s/b impedance is of the order of 50 ohms. Difference
Min Max
0.8 1.5 25.2 25.26 — 25.86 2.31 per cent
0.6 1.5 44.1 44.25 — 44 .40 0.68 per cent

* The case here is for a single wire between parallel ground planes which is similar to the case of widely spaced coupled rods excited in

even mode.

** The case here is for a single wire centered in a square waveguide which is equivalent to the odd mode case wherein d/b+s/b=1.
*** The case here is the trough line; wide spacing is used to make the comparison practical.

which gives the correct asymptotic form to the solutions
of the actual round-rod problems in the even and odd
mode. A second-order correction to the solution was
made which gives the following equations for the even
and odd mode normalized capacitance:
r d
4 b
d 4
Y- ()
2b

-G |

Z (—1)™In tanh m

m=1

1
— —1In
2

To]

L [1 (f”'b '
oy 2<c75> }

hd T
+ 2 In tanh m — —
Z 2 b

(19

n=1

These equations should be quite accurate for small d/b,
say d/b<0.3, and ¢/b>3(d/b). Table 1V shows a com-
parison of C,/e¢ and Cn/e obtained from (13) and (14)
with those obtained from the method in Section III.

In conclusion, the number and consistency of very
good checks indicates that the accuracy of Cn/e and
G,/€ obtained from the numerical solutions of (7) and
(8) is generally better than 2 and 1 per cent, respec-
tively.

TABLE 1V

CoMPARISON OF NORMALIZED CAPACITANCES OETAINED FROM

(13) AND (14) WITH THOSE OBTAINED FROM
SorLuTIONs OF (7) AND (8)

Pef}‘ Cent Ig’er Cent
Difference itference
/b s/b Mutual Self
Capacitances Capacitances
0.4 0.40 2.43 1.60
0.50 2.68 1.08
0.70 2.83 0.53
0.90 2.77 0.30
1.20 2.46 0.16
1.50 3.82 0.16
0.2 0.20 0.06 1.057
0.30 0.17 0.01
0.40 0.72 0.64
0.50 0.39 0.21
0.70 1.50 0.40
0.90 1.28 0.16
1.20 1.21 0.04
1.50 1.22 0.01
0.1 0.20 0.07 0.12
0.30 0.06 0.08
0.40 0.26 0.30
0.50 1.01 0.64
0.70 2.06 0.58
0.90 1.22 0.14
1.20 1.06 0.05
1.50 1.09 0.01
0.05 0.10 0.52 0.54
0.15 0.12 0.204
0.20 0.02 0.13
0.30 0.03 0.08
0.40 0.16 0.14
0.50 0.59 0.33
0.70 3.55 0.87
0.90 1.33 0.17
1.20 1.09 0.01
1.50 1.03 0.02
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Fig. 14—Drawing of interdigital filter using round rods.

Fig. 15—Photograph of a trial interdigital
filter using round rods.
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Fig. 16—Measured VSWR of interdigital
filter using round rods.
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Fig. 17—Measured attenuation of interdigital
filter using round rods.

VI. TRIAL INTERDIGITAL FILTER

The interdigital filter whose design was described in
Section 1I was constructed with §-inch ground-plane
spacing and design center frequency of 1.5 Ge. Previous
work with interdigital filters using rectangular bars
showed that the spacing between the end resonators
and the impedance-transforming section (4.e., rods 0 and
1 and rods 6 and 7 in the present case) should be adjusta-
ble for small changes in spacing [2]. Therefore, the filter
was constructed accordingly. A drawing of the filter is
given in Fig. 14, and a photograph of the construct-
ed filter is given in Fig. 15.

When the filter was initially tested, the pass band
VSWR was slightly high. This condition was corrected
by reducing the spacing between the terminations and
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the first resonator on each end (ie., sg and sg) by
about 0.008 inch—or about 6 per cent. The resuiting
VSWR is shown in Fig. 16. It is seen to be very nearly
Chebyshev although the ripple peaks near the band edge
are slightly high. (A 0.1-db Chebyshev ripple calls for
VSWR peaks of 1.36.)

Fig. 17 shows the measured attenuation character-
istic of the filter. The measured fractional bandwidth is
0.0996 which is very near the design value of 0.10.
(With rectangular bars, the same filter design has a
measured fractional bandwidth of 0.0935, a shrinkage of
7 per cent in bandwidth [2].) The shift of the center fre-
quency of the filter to 1.557 results from the resonators
being slightly short, as noted by Matthaei [2].

VII. ConNcrusioNs

The normalized self and mutual capacitances of peri-
odic, circular cylindrical rods located between parallel
ground planes were given graphically. The capacitances
were determined by solving the appropriate integral
equation by numerical methods. Data were presented
for rod diameter-to-ground-plane spacing ratios varying
from 0.05 to 0.8 for very near to very far rod spacings.
Accuracy of the data is believed to be generally better
than 2 per cent for the normalized mutual capacitance,
and generally better than 1 per cent for the normalized
sell capacitance.

An approximate design method was also presented
which permits using the data to synthesize filters that
require rods of nonequal diameters and spacings. The
design method should be most reliable for moderately
and far spaced rods, but it should also be suitable for
more closely spaced rods. (Closely spaced rods would
probably require some experimental adjustments.)

An example of the design method was given. The
relative rod diameters and spacings were determined for
a 10-per cent 6-resonator 0.1-db Chebyshev ripple, in-
terdigital filter. This design was constructed and tested,
and its performance was found to conform closely to
that called for by theory, thus tending to confirm the

Cristal: Coupled Rods Between Ground Planes

439

accuracy of the design data and the validity of the de-
sign method. Using round rods rather than rectangular
bears in filters where these types of resonators are re-
quired (such as in comb-line and interdigital filters)
should reduce manufacturing cost while retaining the
electrical characteristics of the filter.
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