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Many techniques for accomplishing this are now un-

der investigation and will be reported in later articles.
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Coupled Circular Cylindrical Rods

Between Parallel Ground Planes

ED WARD G. CRISTAL, MEMBER, IEEE

Summary—”l’he normalized self and mutual capacitances of peri-
odic, circular cylindrical rods located between parallel ground planes
are presented graphically. The capacitances were determined by
solving the appropriate integral equation by numerical methods.
Charts of self and mutual capacitance are given for rod diameter-to-
ground plane spacing ratios varying from 0.05 to 0.8 and for very
small to very large spacings between rods. Accuracy of the data is
believed to be generally better than 2 per cent for the normalized

mutual capacitance and generally better than 1 per cent for the

normalized self capacitance. An approximate design method is also
presented that permits using the data to synthesize filters (such as
interdigital and comb-line filters) that require rods of nonequal
diameters and spacings. An example of the design method is given,
and a filter is constructed from the resulting data. The filter response
was measured and found to agree closely with that called for by
the theory.
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1. lNTRODCJcTION

T

HE DESIGN of many UHF and microwave filters

is based on electrically coupling arrays of cylindri-

cal bars located between parallel ground planes

of which the comb-line and interdigital filter are two

examples [1 ], [2 ]. In the past, rectangular bars gener-

ally have been used as coupling elements because the

necessary data are available [3]. Filter equations and

procedures of Matthaei [1], [2], together with design

data of Getsinger [3], have been used to design filters

which have proved to have excellent electrical character-

istics. However, obtaining rectangular bars in practice

requires manufacturing processes which are generally

costly, On the other hand, the use of circular cylindrical

rods as resonators offers several manufacturing advan-

tages and should result in the same excellent electrical

filter properties. For these reasons, design data of

coupled circular cylindrical rods between parallel ground
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planes and a design method for using the data to synthe-

size filters have been prepared and are presented in this

paper.

The coupled rod data are presented in !%ction II.

Also in Section II, the filter synthesis method is ex-

plained by means of an example. The mathematical

derivation of the design data is given in Section II 1.

The physical basis for the design method is presented in

Section IV. A discussion of the accuracy of the coupled

rod data will be found in Section V. The measured per-

formance of a trial filter constructed from the design

data of Section II is described in Section V1.

II. TECHNICAL DESCRIPTION

The geometry of the periodic, circular cylindrical rods

between parallel ground planes and the dimensional

notation are shown in Fig. 1. The circular rods have

diameter d and are spaced periodically at a distance c.

The ground planes are separated at distance b. The

spacing between adjacent rod surfaces is denoted by s

and is given by

s=c —d. (1)
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Fig. l—Coupled circular cylindrical rods
between parallel ground planes.

In the derivation of the design data fringing capaci-

tances beyond nearest neighbors were neglected. It is

therefore possible to describe TEM propagation along

the structure in terms of two orthogonal modes which

have been designated as the even mode and the odd

mode. In the even mode all center conductors are at the

same potential, while in the odd mode successive center

conductors are at equal but opposite signed potentials

with respect to the ground planes. These two TEM

modes have different characteristic impedances which

are intimately related to the total static capacitances of

the rods to ground when in one or the other mode. The

total static capacitances are related to the mutual

capacitance between successive rods Cn, and the self

capacitance CQ of each rod. A consideration of Fig. 1

shows that the total capacitance measured between one

rod and ground when the rods are driven in the odd

mode is

co = c, -+ K., (2)

and the total capacitance measured between one rod

and ground when the rods are driven in the even mode is

c, = c,. (3)

From (2) and (3) are obtained

c* = c. (4)

and

cm= l/4(co – c,). (5)

The characteristic impedance ZO of a lossless uniform

transmission line operating in the TEN mode may be

related to its shunt capacitance by

(6)

where

e, is the relative dielectric constant of the medium

in which the wave travels

q is the impedance of free space (376.7 ohms)

C/e is the ratio of the static capacitance per unit

length between conductors to the permittivity

(in the same units) of the dielectric medium.

(This ratio is independent of the dielectric con-

stant. )

The even and odd mode impedances of coupled TENI

lines can be found by substituting even and odd mode

capacitances of the lines into (6).

Graphs of normalized capacitance C/e vs normalized

spacing s/b are presented in a form that assists the filter

synthesis method. In Fig. 2, CJe vs (1./2)s/b is given.

In Fig. 3, (1/2) Cg/c vs (1/2) s/b is given, Although these

data are for the periodic structure of Fig. 1, a method

has been developed whereby the data can be used for

synthesis of filters in which rods of arbitrary diameters

and spacings are required. The method is approximate,

but is expected to give good results.

The design method will be explained by means of an

example. To facilitate the evaluation of the method, a

previously constructed interdigital ban&pass filter that

uses rectangular bars has been chosen as the example. 1

The filter design calls for a 6-resonator filter having a

10-per cent bandwidth and a O. l-db Chebyshev ripple

in the pass band. Because the filter is symmetrical about

its center, only one-half the filter is shc)wn in the cross-

sectional view in Fig. 4, page 430. The nomenclature

used in Fig. 4 is adopted for this discussion, except that

the dimensions zw and t for the rectangular cross section

of the bars are replaced by the diameters dk of the round

rods. The required normalized capacitances for the de-

sign example are given in Table 1 [2].

1 Matthaei, see [2], pp. 483–486.
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Fig. 4—Cross section of an array of parallel-coupled
lines between ground planes.

T.4BLE I

TABULATION OF QUANTITIES OF A 1O-PER CENT BANDWIDTH
INTERDIGITAL FILTER DESIGN WITH n= 6 RESONATORS [2]

k ck,A.+l/e k ck/~
——

0 and 6 1.582 0 and 7 5.950
1 and 5 0.301 1 and 6 3.390
2 and 4 0.226 2 and 5

3
4,420

0.218 3 and 4 4.496

This filter was designed for O. 10-db Chebyshev ripple.

The design procedure given here assumes that values

for the normalized capacitances have been previously

obtained [1], [2]. The initial step in obtaining the di-

mensions of the structure from the normalized capaci-

tances is to mark off on the graph of Fig. 2 horizontal

lines corresponding to the values of Cm/~ that are called

for in the design. In this example four horizontal lines

of C~/e= C~,~+l/c (for k=O, 1, 2, 3) = 1.58, 0.301, 0.226,

and O.218 are drawn. Next, the coordinates of the inter-

sections of constant C~,/e=O.218, 0.226, 0.301, and 1.58

with the family of constant d/b curves are noted and

plotted on the graph of Fig. 3. Smooth curves are then

drawn on the graph of Fig. 3 through points of constant

C~/e, thus obtaining curves of constant C~/e. This is

shown in Fig. 5.

Next, it is useful to partition the filter configuration

of Fig. 4 into smaller subsections as shown in Fig. 6.

Each subsection consists of a normalized capacitance

to ground and the normalized coupling capacitances to

the right and to the left. To determine the normalized

rod diameters and normalized spacings the designer may

choose any of the subsections (a), (b), (c) or (d) of

Fig. 6 and proceed in the following manner: Assume

that Fig. 6(d) is chosen. On the graph of Fig. 5, assisted

by a suitable drawing aid, several auxiliary curves of

constant d/b are drawn which intersect the curves of

constant C~/E = O.218 and 0.226. These auxiliary curves

are drawn in the vicinity of one-half the value of the re-

quired normalized capacitance to ground, in this case,

(1/2) Cg/e = (1/2) CS/e = 2.25. The objective of drawing

auxiliayy cumes is to jind the unique intersections with the

constant curves of CJe = 0.218 and 0.226 such that the sum

of the oydinates OJ the intersections totals CO/e= C.JE = 4.5.

The proper d/b curve is shown in Fig. 7.

It is seen in Fig. 7 that the coordinates of the inter-

cept at C~/e=O.218 are [(1/2 )s/b=O.387, (1/2) Cg/e

=2.25], and those at C~/e=O.226 are (0.381, 2.25).

Note that the sum of the ordinates is 4.5 as required.

Next, using linear interpolation, d,/b of rod 3 is found to

be 0.351.

~.~ I

(a) (b)

Ed W

(c) (d)

Fig. 6—Groupings of self and mutual capacitances
used in the design example.

Next, the same technique is applied to the values of

normalized capacitance in Fig. 6(c). The correct auxili-

ary curve of constant d/b is shown in Fig. 8, in which

the coordinates of the intercepts with C~/e = 0.226 and

0.301 are (0.381, 2.24) and (0.335, 2.18), respectively.

Note that the ordinates of the intercepts are unequal;

this will usually be the case. However, the sum of the

ordinates must equal the normalized capacitance to

ground. In this case the sum of the ordinates is 2.24

+2. 18= 4.42 = Cz/t. By linear interpolation d/b of rod 2

is found to be 0.352.

Proceeding to Fig. 6(b) and again applying the design

technique, it is found that the coordinates of the inter-

cepts of the auxiliary constant d/b curve with the Cl~/E

= 0.301 and CO1/c= 1.582 curves are (0.330, 2.03) and

(0.098, 1.36), respectively. The d/b of rod 1 is found by

linear interpolation to be 0.324.
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Finally, the design technique is applied to F“ig. 6(a),

and the coordinates (0.120, 2.5) are determined as the

intercept of the auxiliary constant d/b curve and the

CO1/e = 1.582 curve. The coordinates (~, 3.45) are found

as the intercept of the same constant d/b curve with the

fictitious coupling capacitance tothe left of CO set equal

to zero. In the latter instance the right-hi>nd extreme of

Fig. 5 is used where the constant d/b curves are virtually

flat. By linear interpolation, d/b of rod O is found to be

0.516. The auxiliary constant d/b curves used in the last

two subsections are shown in Fig. 9.

The respective normalized spacings, Sk ,~+l/b are ob-

tained by summing abscissa values ‘thaLt correspond to

the same mutual capacitance. Bookkeeping is simplified

by placing abscissa values along their corresponding

mutual capacitances:

(1/2).s/6

+ $/b

Fig. 8—I>eternIination of the normalized diameter of rod 2
and the partial spacings to rods 1 and 3.

0.381
0.387

Ck,k+l

Cal

Coil

cl,)

C121

C23J

—

obtained From

Fig. 6(a)

Fig. 6(b)

Fig. 6(c)

Fig. 6(d)
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Therefore,

sO1/b = 0.120 + 0.098 = 0.218 = S67/b

s12//b = 0.330 + 0.335 = 0.665 = sbJb

sxJb = 0.381 + 0.381 = 0.762 = sAK/b

szJb = 0.387 + 0.387 = 0.774.

Center to center spacings may be obtained by adding

to the appropriate s/b value (1/2) d/b of the rod on the

left and (1/2) d/b value of the rod on the right.

Thus,

Ck,k+l/b = slC,k+l/b + (1/2)dk/b + (1/2) dk+l/b

cOJb = 0.218 + 0.258 + 0.162 = 0.638 = c67/b

cl~,lb = 0.665 + 0.162 + 0.176 = 1.003 = Gss,,lb

c23/b = 0.762 + 0.176 + 0.175 = 1.114 = cJ5/b

cw/b = 0.774+ 0.1755 + 0.1755 = 1.125.

The normalized rod diameters obtained as described

previously using Figs. 7–9 are

do/b = 0.516 = d7/b

d,/b = 0.324 = d6/b

dj/b = 0.352 = dJb

d,/b = 0,351 = di,/b.

The design specifications for the filter using rectangu-

lar bars and the same filter using round rods are com-

pared in Table II, where the spacings between successive

round rods are closer, in general, than spacings between

successive rectangular bars. Also, the round rods are

larger in cross-sectional areas than the rectangular bars.

TABLE II

PARAMETERS OF AN INTERDIGITAL FILTER DESIGN USING ROUND
RorIs COMPARED WITH THE SAME FILTER USING

RECTANGULAR BARS

Round Rectan-
Round Rectan- Recta n-

k
Rods gular

Bars k
Rods gular gular

Bars Bars

%k+db .$I:,k+db (d/b), Y_/b), (t/b),

0 and 6 0.218 0.255 0 and 7 0.516 0.648 0.3
1 and 5 0.665 0.670 1 and 6 0.324 0.243 0.3
2 and 4 0.762 0.820 2 and 5 0.352 0.294 0.3

3 0.774 0.830 .3 and 4 0.351 0.293 0.3

III. MATHEMATICAL DETERMINATION OF Cm AND C,

The boundary-value problems associated with the pe-

riodic cylindrical rods between parallel ground planes

depend on the mode of excitation. When the structure

is excited in the odd mode the mathematical problem

is to satisfy Laplace’s equation in the region shown in

Fig. 10(a), and the boundary conditions as given in the

figure. This is a Dirichlet problem. When the structure

is excited in the even mode the mathematical problem

is to satisfy Laplace’s equation in the region shown in

Fig. 10(b) and the boundary conditions as shown in this

i~l
,,/ /’/y
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Fig. 10—Equivalent bouudary value problems associated with the
even and odd mode excitation of the coupled circular rods.

figure. This is a boundary-value problem with mixed

boundary conditions.

As stated in Section II, the capacitance associated

with the solution of the Dirichlet problem is given by

(2), and the capacitance associated with the solution of

the mixed boundary problem is given by (3). From

these are obtained Cm and Cu.

The method of determining the even and odd mode

capacitances was to solve the integral equation associ-

ated with the boundary-value problem and thus obtain

the normalized surface charge density; then the total

normalized charge was obtained by integration. The

normalized charge was divided by the potential differ-

ence to give the normalized capacitance. The general-

ized integral equation for both boundary-value prob-

lems is

wherever the boundary curve has a unique tangent. 2 P

denotes the principal value of the integral. 3

2 In Fig. 11, it is shown that the path of integration for (7) has an
interior right angle. If the position vector 70 lies at this point, the term
( ~<?) ~(~,) on the right-hand side of (7) should be replaced by
(3/4) V(Y, ).

8 Eq. (7) may be derived by taking the two-dimensional integral
formulation for the potential at a point within a closed boundary and
permitting the obser~,ation point to approach the boundary (See,
for example, J, A. Stratton, “Electromagnetic Theory, ” M cGraw-
HilI Book Co., Inc., N’ew York, N. Y., pp. 166–170 and problem 8,
p. 2 19; 1941), and permitting the observation point ot approach the
boundary. The limiting operatioa may be performed as in Mai and
Van Bladel [1 1], or alternatively, the observation point may alter-
nati~-ely be placed on the boundary and the bouudary curve in the
vicinity of the observation point deformed into an appropriate seg-
ment of a circle of infinitesimally small radius, The deformation is
such as to leave the observation point withiu the boundary. The seg-
ment of circle is m radians where the bouudary curve has a unique
tangent and is +~ radiaus at the right angle.
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For the Dirichlet problem (7) reduces to

on the outer boundary

on the inner boundary (8)

where 17, and 1’0 are the respective potentials on the

inner and the outer boundary. The notation used in (7)

and (8) is clarified by Fig. 11. Vector 7 is a position vec-

tor from an arbitrary origin to a point on the boundary

at which the integrand is being evaluated. Vector ?0 is

a position vector to a point on the boundary where the

voltage is being evaluated. Voltages V(r) and l’(?.) are

the voltages at the vector positions P and ?“, respec-

tively. Vector tir is a unit vector in the direction of

? — vO. Vector ~~,, is the outward pointing unit normal to

the boundary surface. Finally, ds(?) is the differential

length of the boundary curve at the vector position ?,

and q(?)/e is the normalized surface charge density at

the vector position ?.

The method of solution was to divide the boundary

curve into n subintervals, and assign to each subinterval

an unknown constant normalized surface charge density

or an unknown constant potential. These unknown con-

stants were then removed from under the integral sign

and the integrations performed analytically or numer-

ically in each subinterval. In the general case, (7) takes

the form

fori=l,2, ..., m. Because of the symmetry of the

boundary curve and boundary conditions, (9) may be

reduced by a factor of 4 or, alternatively, the problem

may be reformulated using one quadrant of the struc-

ture. (The former procedure was used in this work.)

After the integrations in (9) had been carried out, the

equations were arranged into a matrix. For (8) the

matrix takes the form

1;] 1
gll glz “ “ “ gln

g?l ...gzn 1

1:1 I
1“1
Iv= .

17 “
“1

[v] Igml gm.

o.,smvm’m PO!NT

mm,,,,?+ 0,
,NTEGPATION Pm”

u.
O“TWARD -

POINT, MG .!4,7
NORMAL 0,
80”NDARY CURVE

Fig. 1 l—Geometry and vector nomenclature used in the even
and odd mode boundary value integral equation.

where V is the potential difference between the bound-

aries. For (7), the matrix takes the form

where ~~, (i=l, 2, . . . , r) represents the unknown

potential on the part of the boundary where d 17/c3n = O;

andyi(i=l,2, ..., m) are constants which take into

account contributions from the second term on the right

in (7). The entries gl~ and G;r are constants obtained from

the indicated integrations in (9).

In solving (10) and (11) it was found that convergence

was quicker in many cases when an over determined set

of equations was compiled (i. e., m > n) and a least squares

method used to solve them [4]. This was done in all

cases. In order to guarantee accuracy of the inverted

matrix, which was generally a 40 by 40 matrix, pertur-

bation methods were used which required the inverse

matrix to be accurate to 0.01 per cent [5]. This was

found necessary because of the loss of significant digits

in inverting the very large matrices in (10) and (1 1).

In order to determine whether or not a solution to

(10) or (11) gave a sufficiently close approximation to

the even or odd mode capacitance, the number of sub-

intervals of the boundary curve was increased, thereby

increasing the number of simultaneous equations. The

capacitance obtained from the solution of the new set of

equations was next compared with that of the former

set. When the capacitance remained sufhciently invari-

ant to successive enlargements of the matrix, conver-

gence was assumed. 4 In order to avoid having to test

every solution by this method, several geometries were

picked that appeared to offer the greatest dificulty of

obtaining convergence. The largest order that was re-

quired to obtain convergence for these geometries was

used for all subsequent cases.

q The problem of convergence and of the accuracy of the solutions
will be discussed in Section V.
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One additional refinement was explored in attempting

to obtain fast convergence. The side condition that the

total charge be zero was attached, although the condi-

tion is redundant in that it is satisfied by the proper

solution. This technique was applied only to (11). In the

few cases examined, the additional side condition did

appear to result in a better approximation to the correct

answer with smaller matrices than the former method

without side conditions. However, for large matrices no

general trend was clear. Also for rods of very small di-

ameter (i.e., d/b <0.3), the inverse matrix of (11) could

not be obtained in the time allowed. This inability to

obtain an inverse matrix was probably due to the side

condition making the matrix of (11) extremely skew [6]

and thereby causing too great a 10SS of significant digits

when the matrix was inverted.

IV. PHYSICAL BASIS FOR THE METHOD OF DESIGNING

FILTERS THAT USE RODS OF UNEQUAL

DIAMETERS AND SPACINGS

Fig. 12 shows three rods of a hypothetical multirod

filter configuration with the self capacitances divided

into left and right components parts. The following as-

sumptions are made concerning the coupled-rod con-

figuration.

1) Coupling beyond nearest neighbors is negligible.

2) A moderate change in the size or spacing of a given

rod has only a second-order effect on the charge

distribution on the far side of adj scent rods.

Therefore, by assumptions 1) and 2), the mutual capaci-

tance C~,i+l is dependent only on the right half of rod i

and the left half of i+ 1, and (from Fig. 12) C,L is inde-

pendent of the spacing and diameter of the adjacent rod

on the right; C,R is independent of the spacing and diam-

eter of the adjacent rod on the left. The self capacitance

of a rod is given by

C~ = C~L + Ci’. (12)

Consider the rods in Fig. 12 to be excited in the odd

mode. This is shown in Fig. 13 where the electric flux

lines are sketched and a ground value equipotential line

is approximated. The equipotential line will be ap-

proximately straight for rods having moderate and far

spacings and should not be strongly dependent on the

rod diameters with these spacings. (In most filter de-

signs the rods in the center of the filter are nearly the

same diameter and only vary greatly at the ends of the

filter.) If the rods were excited in the even mode, then

the equipotential line in Fig. 13 would approximately be

the line where, also, d V/13n = 0.5

Again from Fig. 13, it may be stated on the basis of

the previous approximations that the left half of rod 2

sees boundary conditions which are equivalent to a sys-

tem of equispaced, equidiameter rods of diameter d2

spaced at s = SZL and having a mutual Capacitance

6 This approximation is perhaps in error more than previous ap-
proximations. However, for moderately spaced rods the even mode
capacitance is not strongly dependent on spacing. Therefore, a larger
error in the position of the 13V/an = O line can be tolerated.

///////// ‘///////i ///’7//////[
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//, ‘//////z ‘////////////’////// /

Fig. 12—Hypothetical multirod filter configuration showing divi-
sion of self capacitance into left and right component parts.

EQUI- POTENTIAL LINE

Fig. 13—H ypothetical multirod filter configuration
excited in odd mode.

Cm= C12. (Note that sZL/2 is indicated in Fig. 13.) At

the same time, the right half of rod 1 sees boundary

conditions equivalent to a system of equispaced, equi-

diameter rods of diameter dl spaced at s = J-IR but also

with a mutual capacitance of Cm= CIZ.G Through the

use of this artifice (i.e., approximating left and right

boundary conditions independently) the designer is able

to use the data given in Figs. 2 and 3 to obtain arbitrary

values of mutual and self capacitance needed in a filter

design. The design method described in Section II is

one method of utilizing the above artifice. The method

described was found easy to apply and also efficient in

terms of design time.

V. ACCURACY OF THE SOLUTIONS

A difficulty that arises from solving (7) and (8) by

the method discussed in Section I I I is that the accuracy

of the solution cannot be precisely stated. Although

other methods of solutions are possible which in theory

give upper and lower bounds for the answer [7] (at least

in the Dirichlet problem), practical considerations make

these methods undesirable in this particular problem.

However, in order to be sure of the results obtained by

the method of Section I I 1, several comparisons are made

in Table I I I with data taken from other sources.

By replacing the round rods with infinitesimal line

charges located at the center of each cylinder and using

the method of images, a solution has been obtained

6 This concept (i. e., that the proper left and right half spacings
are determined when successive rods have the same mutual capaci-
tance) is credited to Dr. G. L. lMatthaei.
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TABLE III

COMPARISONSOI?CHARACTERISTIC lMPIZDAXC~S OBTAINED FROM SOLUTIONS OF (7) AND (8)
WITH THOSE OBTAINED FROM PUBLISHED SOURCES
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Case Zh
IT’r-Handbook [8]*

,,,. 0 ms

I
This \Vork

Ze,e,,=138 IOg,o [(4/7r)/(d/b)l
d/b s[b Accuracy not specified

06 1.5 44.1
0.4 1.5 68.7
().1 1.5 109.8

45.1
69..4

110.9

Case ZOM ohms
ITT-Handb:ok [9]**

d/b I This t~ork
20 M ohms

slb Accuracy not specified

0.5
I

0.5
0.1 0.9 1

46.1
142,6

I I—

Case 2A ohms
— This Ll”orli

d/b sjb
—. ———

0.8 I 1.5

!

25.2
0.6 1.5 44.1

45.0
141.5

Chisholm [1 O]’**
Zo,i,L ohms

Accuracy about 0.6 per cent, when the
impedance is of the order of 50 ohms.

M in Max
25,26 25.86
44.25 44.40

Per cent
Difference

1.5 per cent
1.0 per cent
0.99 per cent

Per cent
Difference

2.5 per cent
0.78 per cent

t~orst
Per cent
Difference

2.31 per cent
0.68 per cent

* The case here is for a single wire between parallel ground planes which is similar to the case of widely spaced coupled rods excited in
even mode.

** The case here is for a single wire centered in a square waveguide which is equit,alent to the odd mode case wherein d/b t .$/b = 1
*** The case here is the trough line; wide spacing is used to make the comparison practical.

which gives the correct asymptotic form to the solutions

of the actual round-rod problems in the even and odd
T.WLE J\’

mode. A second-order correction to the solution was
COM~ARISO~ m NORMALIZED CAPACITANCES ()~TAIN~D FROM

made which gives the following equations for the even (13) AND (14) WITH THOSE OBTAINEDI F’RQM

and odd mode normalized capacitance: SOLITTIONSOF (7) AND (8)
—.

—

n-d

‘nii) d,

2b

:’”[1-(&Y]

dlb

0.4

These equations should be quite accurate for small d/b,

say d/b <0.3, and c/b > 3(d/b). Table IV shows a com-

parison of C,/C and C~/c obtained from (13) and (14)

with those obtained from the method in Section II 1.

In conclusion, the number and consistency of very

good checks indicates that the accuracy of C./~ and ----——

G@/e obtained from the numerical solutions of (7) and

(8) is generally better than 2 and 1 per cent, respec-

tively.

S/b

0.40
0.50
0.70
0.90
1,’20

1.50

0.20
0.30
0.40
0.50
0.70
0.90
1.20
1.50

0.20
0.30
0.40
0.50
0.70
0.90
1.20
1.50

1.20
1.50

Per Cent
Difference

hIutLlal
Capacitance

2.43
2.68
2.83
2.77
2.46
3.82

0.06
0.17
0.72
0.39
1.50
1.28
1.21
1.22

0.07
0.06
0.26
1.01
2.06
1.22
1.06
1.09

0,52

0.12
0.02
0.03
0.16
0.59
3.55
1.33
1.09
1.03

Per Cent
Difference

Self
Capacitances

1.60
1.08
0.53
0.30
0.16
0.16

1.057
0.01
0.64
0.21
0.40
0.16
0.04
0.01

0.12
0.08
0.30
0.64
0.58
0.14
0.05
0.01

0.54
0. 20’!
0.13
0.08
0.14
0.33
0.87
0.17
0.01
0.02
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2 ANO5 0.220 2 ANO4 0.696
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Fig. 14—Drawing of interdigital filter using round rods.

Fig. 15—Photograph of a trial intercligital
filter using round rods.
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Fig. 16—NIeasured VSWR of interdigital
filter using I-ound rods.
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Fig. 17—Measured attenuation of interdigital
filter using round rods.

VI. TRIAL INTERDIGITAL FILTER

The interdigital filter whose design was described in

Section II was constructed with +inch ground-plane

spacing and design center frequent y of 1,5 Gc. Previous

work with interdigital filters using rectangular bars

showed that the spacing between the end resonators

and the impedance-transforming section (i.e., rods O and

1 and rods 6 and 7 in the present case) should be adjusta-

ble for small changes in spacing [2]. Therefore, the filter

was constructed accordingly. A drawing of the filter is

given in Fig. 14, and a photograph of the construct-

ed filter is given in Fig. 15.

When the filter was initially tested, the pass band

VSWR was slightly high. This condition was corrected

by reducing the spacing between the terminations and
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the first resonator on each end (i. e., SOI and .j~~) by

about 0.008 inch—or about 6 per cent. The resuiting

VSWll is shown in Fig. 16. It is seen to be very nearly

Chebyshev although the ripple peaks near the band edge

are slightly high. (A O.1-db Chebyshev ripple calls for

VSWfl peaks of 1.36.)

Fig. 17 shows the measured attenuation character-

istic of the filter. The measured fractional bandwidth is

0.0996 which is very near the design value of 0.10.

(With rectangular bars, the same filter design has a

measured fractional bandwidth of 0.0935, a shrinkage of

7 per cent in bandwidth [2 ].) The shift of the center fre-

quency of the filter to 1.557 results from the resonators

being slightly short, as noted by Matthaei [2].

VII. CONCLUSIONS

The normalized self and mutual capacitances of peri-

odic, circular cylindrical rods located between parallel

ground planes were given graphically. The capacitances

were determined by solving the appropriate integral

equation by numerical methods. Data were presented

for rod diameter-to-ground-plane spacing ratios varying

from 0.05 to 0.8 for very near to very far rod spacings.

Accuracy of the data is believed to be generally better

than 2 per cent for the normalized mutual capacitance,

and generally better than 1 per cent for the normalized

self capacitance.

An approximate design method was also presented

which permits using the data to synthesize filters that

require rods of nonequal diameters and spacings. The

design method should be most reliable for moderately

and far spaced rods, but it should also be suitable for

more closely spaced rods. (Closely spaced rods would

probably require some experimental adj ustrnents.)

An example of the design method was given. The

relative rod diameters and spacings were determined for

a 10-per cent 6-resonator O. l-db Chebyshev ripple, in-

terdigital filter. This design was constructed and tested,

and its performance was found to conform closely to

that called for by theory, thus tending to confirm the
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accuracy of the design data and the validity of the de-

sign method. Using round rods rather than rectangular

bears in filters where these types of resonators are re-

quired (such as in comb-line and interdigital filters)

should reduce manufacturing cost while retaining the

electrical characteristics of the filter.
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